

TPM[™] in a VIA[™] Package TPM1714xE3MG5K7yzz

ROHS CE

Three-Phase AC Input Module

Features & Benefits

- Three-phase input
- 170 530V_{AC} (line to line)
- 47 840Hz
- Chassis-Mount or PCB-Mount Form Factor
- Small robust package
- Low profile
- EMI filtering
- Meets EN61000-4-5 Class 3 surge protection at $V_{IN} = 208V_{AC}$ when used with external surge trap and fuse, paired with Vicor BCM4414 VIA high-voltage products

Typical Applications

- 3-Phase AC-DC Power Converters
- Test and Measurement Equipment
- Industrial Power Systems

Part Ordering Information

Product Ratings				
V _{IN} = 170 – 530V (L – L)	$P_{OUT} = up to 1650W$			
V _{OUT} = Rectified AC	$I_{OUT} = 2.3A$			

Product Description

The TPM in a VIA Package (Three-Phase Module) is a front-end module designed to interface with worldwide three-phase AC mains and provide a rectified AC input to the Vicor family of BCM4414 VIA high-voltage and ultra-high-voltage products. The TPM combines a full-wave bridge rectifier, EMI filter and surge-protection circuitry in an easy-to-use VIA plastic housing. The TPM can be used with other power components (such as the ultra-high-voltage BCM[®] to create a low-profile, efficient, simple and cost-effective AC-DC solution for a broad range of end applications.

Part Number Package Type **Product Grade Option Field** TPM1714BEMG5K7C04 04 = Short Pin/Always On **C** = -20 to 100°C TPM1714BEMG5K7C08 08 = Long Pin/Always On TPM1714BEMG5K7T04 **04** = Short Pin/Always On **B** = Board VIA **T** = -40 to 100°C TPM1714**B**EMG5K7**T08** 08 = Long Pin/Always On TPM1714**B**EMG5K7**M04** 04 = Short Pin/Always On **M** = -55 to 100°C TPM1714BEMG5K7M08 08 = Long Pin/Always On TPM1714VEMG5K7C00 **C** = -20 to 100°C TPM1714VEMG5K7T00 V = Chassis VIA **T** = -40 to 100°C **00** = Chassis/Always On TPM1714VEMG5K7M00 **M** = -55 to 100°C

Typical Application

Parts List for Typical PCB-Mount Applications			
F1, F2, F3	Eaton/Bussman 5A/600V _{AC} , Class CC, KTK-R-5		
SPD	Mersen Surge-Trap Model ST2083PYG rated 120/208V_{AC} or ST4803PYG rated 277/480V_{AC}		
TPM	Vicor TPM TPM1714xE3MG5K7yzz		
BCM	Vicor BCM® BCM4414xD1E5135yzz, or BCM4414xD1E13A3yzz, BCM4414xD1E2663yzz or BCM4414xG0F4440yzz		
PRM	Downstream PRM™ regulator (optional)		
C _{OUT}	Output hold-up capacitor (optional): must be located after regulator to avoid harmonics degradation		

Typical Applications (Cont.)

Typical Application: TPM configuration and external components used for conducted-emission scan shown in Figure 2

Parts List for Conducted-Emissions Scan		
C1, C2, C3	X1 capacitors, 0.1µF, Kemet PHE844, rated 440V~ (ENEC) / 480V~ (UL/CSA)	
C4, C5	Y1 capacitors, Vishay VY1472M61Y5UC63V0, rated 4.7nF/Y5U/500V _{AC}	
TPM	TPM1714xE3MG5K7yzz	
BCM	Ultra-High-Voltage BCM [®] BCM4414xG0F4440yzz	

Pin Configuration

Please note that these pin drawings are not to scale.

Pin Descriptions

Signal Name	Туре	Function
L1	INPUT POWER	AC Line 1 input
L2	INPUT POWER	AC Line 2 input
L3	INPUT POWER	AC Line 3 input
-OUT	OUTPUT POWER RETURN	Negative output power terminal
+OUT	OUTPUT POWER	Positive output power terminal

Absolute Maximum Ratings

The absolute maximum ratings below are stress ratings only. Operation at or beyond these maximum ratings can cause permanent damage to the device.

Parameter	Comments	Min	Мах	Unit	
Peak Voltage at Input Terminals, 1ms Max	Limits refer to TPM only. System limits (TPM + BCM4414) will vary based on absolute	0	800	V _{PK}	
Input Voltage (AC RMS) Continuous	maximum ratings of BCM model selected	0	530	V _{RMS}	
Output Current (Continuous)		0	2.3	A _{RMS}	
Operating Internal Temperature	C-Grade	-20	125		
	T-Grade	-40	125	°C	
	M-Grade	-55	125		
Storage Temperature		-65	125	°C	
Input / Output Pin Torque and Mounting Torque			4 [0.45]	in·lbs [N·m]	

Electrical Specifications

Specifications apply over all line and load conditions, 50Hz and 60Hz line frequencies, $T_{CASE} = 25^{\circ}C$, unless otherwise noted. **Boldface** specifications apply over the temperature range of the specified product grade.

Attribute	Symbol	Conditions / Notes	Min	Тур	Мах	Unit
		Input Specifications				
Input Voltage Range, Continuous Operation	V _{IN}	Line-to-line voltage	170		530	V _{RMS}
Input Voltage Range, Transient, Non-Operational (Peak), 30s Minimum Interval	V _{IN}				800	V _{PK}
Source Line Frequency Range	f _{LINE}		47		840	Hz
Power Factor	PF	Full load, no external capacitance		0.95		-
		Output Specifications				
Output Power	P _{OUT}				1650	W
Output Current (Continuous)	I _{OUT}				2.3	А
Full-Load Efficiency		$V_{IN} = 400V_{AC}$		99.4		0/
	η	Over line and temperature		98.7		%
		$V_{IN} = 400V_{AC}$		97.3		0/
Full-Load Efficiency, 800Hz	η_{800}	Over line and temperature		97.0		%

Application Characteristics

Figure 1 — Typical conducted emissions, peak scan, with BCM4414VG0F4440T02 VIA, 400V_{AC}, 90% load, no external components

Figure 3 — V_{IN} to V_{OUT} efficiency vs. V_{IN} (line to line) and I_{OUT} , $T_{CASE} = 25^{\circ}C$

Figure 5 — Start up from V_{IN}

Figure 2 — Typical conducted emissions, peak and average scan, with BCM4414VG0F4440T02 VIA, 400V_{AC}, 90% load, with external components as shown in typical application on page 3

Figure 4 — V_{IN} to V_{OUT} power dissipation vs. V_{IN} (line to line) and I_{OUT} , $T_{CASE} = 25^{\circ}C$

General Characteristics

Specifications apply over all line and load conditions, 50Hz and 60Hz line frequencies, $T_{CASE} = 25^{\circ}C$, unless otherwise noted. **Boldface** specifications apply over the temperature range of the specified Product Grade.

Attribute	Symbol	Conditions / Notes	Min	Тур	Мах	Unit
		Mechanical				
Length	L			44.6 [1.76]		mm [in
Width	W			35.5 [1.40]		mm [in
Height	Н			9.3 [0.37]		mm [ir
Volume	Vol	Without heat sink		14.5 [0.88]		cm ³ [in
Mass (Weight)	М			35 [1.2]		g [oz]
Pin Material		C145 copper, half hard				
Underplate		Low-stress, ductile nickel	50		100	µin
		Palladium	0.8		6	µin
Pin Finish		Soft Gold	0.12		2	µin
		Thermal				
		C-Grade	-20		100	°C
Operating Case Temperature	T _{CASE}	T-Grade	-40		100	°C
		M-Grade	-55		100	
Thermal Resistance, Internal to Case Non-Pin Side	$\theta_{\text{INT}_\text{NON}_\text{PIN}_\text{SIDE}}$			2.2		°C/W
Thermal Design		See Thermal Considerations on Page 9				
		Soldering				
Temperature		See: AN:401 PCB Mount VIA Soldering Guidelines				
		Reliability				
		MIL-HDBK-217FN2 Parts Count - 25°C				
		Ground Benign, Stationary, Indoors Computer		8.2		
MTBF		Telcordia Issue 2 - Method I Case III; 25°C		28.6		MHrs
		MIL-HDBK-217FN2 - 25°C Ground Benign, Stationary, Indoors Computer		7.4		
		Safety				
Agency Approvals Standards		EN60950-1; CE marked for low voltage di	ective and Ro	HS recest directive	as applicabl	2
		IN / OUT to Case	2200		, as applicabl	
Dielectric Withstand (Hipot)		No Y capacitor connection of GND	2200			V _{AC}
Leakage Current Touch Current		connection within package		Negligible		
		EMI/EMC Compliance				
FCC Part 15, EN55032 : 2015, Conducted Emissions		Class A Limits, with BCM4414xG0F4440yzz				
EN61000-4-5: 2015, Level 3 Surge Immunity		Performance Criteria B 208V, with BCM4414xG0F4440yzz				

TPM1714xE3MG5K7yzz

Environmental Qualification

Testing Activity	Reference Standard	Test Details
High Temperature Operating Bias/Life (HTOB/HTOL)	JESD22-A108D	1000hrs, nominal full load at max operating temperature
Temperature Cycling Test (TCT)	IPC-9592B	125 to –40°C, 700 cycles
Temperature Humidity Bias (THB)	JESD22-A101C	1000hrs, Nominal input voltage, minimal load 85°C, 85% RH
High Temperature Storage (HTS)	JESD22-A103D	1000hrs, 125°C
Low Temperature Storage (LTS)	JESD22-A119	1000hrs, –65°C
Random Vibration	MIL-STD-810G	Method 514.6, Procedure I, Category 24, 20 – 2000Hz, @7.7g _{RMS} , 1hour /axis for 3 axis. Product mounted on an evaluation board, nominal line 50% load.
Mechanical Shock	MIL-STD-810G	Method 516.5, Procedure I, Functional shock 40G, total of 18 shocks. Product mounted on an evaluation board, nominal line 50% load.
Highly Accelerated Life Test (HALT)	Internal Vicor Procedure - DP-0265	Low and high temperature tests, rapid thermal cycling, random vibration testing, combined stress testing and destruct testing.
Res. Solvents	MIL-STD-202G	Method 215K, 3 minutes exposure
ESD Human Body Model	JEDEC JS-001-2012	Class 1C (HBM) minimum
ESD Charged Device Model	JESD22-C101E	Class II (CDM) minimum

Thermal Considerations

The TPM in a VIA package can be cooled using single side cooling from the non-pin side.

Internal operating temperatures will be kept to acceptable limits if the lower housing of the unit is mounted to a metal plate (coldplate or heatsink) with thermal grease that is kept to 100°C or less. If the unit is not mounted to a metal plate, then a thermocouple on the bottom housing located midway between the two mounting holes needs to be kept to 110°C or less.

Creepage

In chassis-mount applications a Gap Pad TIM is necessary to meet the creepage requirements from the Input/Output terminals to chassis. If a heat sink is used then it will need to be insulated or sized appropriately to satisfy the creepage requirements from the Input/Output terminals to the heatsink. Vicor Part Number 47591 shown on page 13 can be used to meet the required creepage distances.

TPM in a VIA Package Chassis-Mount Package Mechanical Drawing

Product outline drawing; product outline drawings are available in .pdf and .dxf formats. 3D mechanical models are available in .pdf and .step formats.

TPM1714xE3MG5K7yzz

TPM in a VIA Package PCB-Mount Package Mechanical Drawing

TPM™ in a VIA™ Package Page 11 of 15

TPM in a VIA Package PCB-Mount Recommended Land Pattern

TPM1714xE3MG5K7yzz

TPM1714 Thermal Interface Material (TIM) Pad Mechanical Drawing

Revision History

Revision	Date	Description	Page Number(s)
1.0	07/10/18	Intitial release	n/a
1.1	07/12/18	Updated to include safe operating area	5, 6
1.2	10/11/18	Updated to remove SOA	5
1.3	02/25/19	Updated to include M-Grade version of part	1, 5, 7

Note: page added in Rev 1.1, removed in Rev 1.2.

Vicor's comprehensive line of power solutions includes high density AC-DC and DC-DC modules and accessory components, fully configurable AC-DC and DC-DC power supplies, and complete custom power systems.

Information furnished by Vicor is believed to be accurate and reliable. However, no responsibility is assumed by Vicor for its use. Vicor makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication. Vicor reserves the right to make changes to any products, specifications, and product descriptions at any time without notice. Information published by Vicor has been checked and is believed to be accurate at the time it was printed; however, Vicor assumes no responsibility for inaccuracies. Testing and other quality controls are used to the extent Vicor deems necessary to support Vicor's product warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Specifications are subject to change without notice.

Visit http://www.vicorpower.com/ac-input-three-phase-module for the latest product information.

Vicor's Standard Terms and Conditions and Product Warranty

All sales are subject to Vicor's Standard Terms and Conditions of Sale, and Product Warranty which are available on Vicor's webpage (<u>http://www.vicorpower.com/termsconditionswarranty</u>) or upon request.

Life Support Policy

VICOR'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF VICOR CORPORATION. As used herein, life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness. Per Vicor Terms and Conditions of Sale, the user of Vicor products and components in life support applications assumes all risks of such use and indemnifies Vicor against all liability and damages.

Intellectual Property Notice

Vicor and its subsidiaries own Intellectual Property (including issued U.S. and Foreign Patents and pending patent applications) relating to the products described in this data sheet. No license, whether express, implied, or arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Interested parties should contact Vicor's Intellectual Property Department.

The products described on this data sheet are protected by the following U.S. Patents Numbers: Patents Pending.

Contact Us: http://www.vicorpower.com/contact-us

Vicor Corporation 25 Frontage Road Andover, MA, USA 01810 Tel: 800-735-6200 Fax: 978-475-6715 www.vicorpower.com

email

Customer Service: <u>custserv@vicorpower.com</u> Technical Support: <u>apps@vicorpower.com</u>

©2018 – 2019 Vicor Corporation. All rights reserved. The Vicor name is a registered trademark of Vicor Corporation. All other trademarks, product names, logos and brands are property of their respective owners.

Rev 1.3 02/2019

